Wed 04 Jun 13:00: The Australian Antarctic Program Partnership (AAPP) Biogeochemistry Project: Understanding the changing Southern Ocean carbon cycle
The Australian Antarctic Program Partnership (AAPP) is focused on understanding the nature and impacts of Southern Ocean Change. The Biogeochemistry Project, one of the seven complementary initiatives within the AAPP , combines observations, models and data syntheses to understand changes in the Southern Ocean carbon cycle. This work is undertaken in collaboration with other government agencies, national infrastructure programs, and academic institutions, and highlights the use of essential ocean observations and models to improve understanding and deliver impact. An overview of recent field programs will be presented, along with new work to quantify the uptake and storage of anthropogenic CO2 in the ocean, to validate estimates of ocean carbon export from autonomous platforms, and to improve model representation of air-sea CO2 exchange.
- Speaker: Elizabeth H. Shadwick, CSIRO Environment
- Wednesday 04 June 2025, 13:00-14:00
- Venue: BAS Seminar Room 1.
- Series: British Antarctic Survey - Polar Oceans seminar series; organiser: Dr Birgit Rogalla.
Wed 04 Jun 13:00: The Australian Antarctic Program Partnership (AAPP) Biogeochemistry Project: Understanding the changing Southern Ocean carbon cycle
The Australian Antarctic Program Partnership (AAPP) is focused on understanding the nature and impacts of Southern Ocean Change. The Biogeochemistry Project, one of the seven complementary initiatives within the AAPP , combines observations, models and data syntheses to understand changes in the Southern Ocean carbon cycle. This work is undertaken in collaboration with other government agencies, national infrastructure programs, and academic institutions, and highlights the use of essential ocean observations and models to improve understanding and deliver impact. An overview of recent field programs will be presented, along with new work to quantify the uptake and storage of anthropogenic CO2 in the ocean, to validate estimates of ocean carbon export from autonomous platforms, and to improve model representation of air-sea CO2 exchange.
- Speaker: Elizabeth H. Shadwick, CSIRO Environment
- Wednesday 04 June 2025, 13:00-14:00
- Venue: BAS Seminar Room 1.
- Series: British Antarctic Survey - Polar Oceans seminar series; organiser: Dr Birgit Rogalla.
Wed 04 Jun 13:00: The Australian Antarctic Program Partnership (AAPP) Biogeochemistry Project: Understanding the changing Southern Ocean carbon cycle
The Australian Antarctic Program Partnership (AAPP) is focused on understanding the nature and impacts of Southern Ocean Change. The Biogeochemistry Project, one of the seven complementary initiatives within the AAPP , combines observations, models and data syntheses to understand changes in the Southern Ocean carbon cycle. This work is undertaken in collaboration with other government agencies, national infrastructure programs, and academic institutions, and highlights the use of essential ocean observations and models to improve understanding and deliver impact. An overview of recent field programs will be presented, along with new work to quantify the uptake and storage of anthropogenic CO2 in the ocean, to validate estimates of ocean carbon export from autonomous platforms, and to improve model representation of air-sea CO2 exchange.
- Speaker: Elizabeth H. Shadwick, CSIRO Environment
- Wednesday 04 June 2025, 13:00-14:00
- Venue: BAS Seminar Room 1.
- Series: British Antarctic Survey - Polar Oceans seminar series; organiser: Dr Birgit Rogalla.
If it looks like a dire wolf, is it a dire wolf? How to define a species is a scientific and philosophical question
Urban rewilding has brought back beavers, hornbills and platypuses to city parks – and that’s just the start
For many island species, the next tropical cyclone may be their last
Armed groups are invading Benin’s forest reserves. Why and what to do about it
Southern Africa’s rangelands do many jobs, from feeding cattle to storing carbon: a review of 60 years of research
Tue 24 Jun 14:00: The statistical challenges in tackling persistent climate model uncertainty through model-observation comparisons. https://teams.microsoft.com/l/meetup-join/19%3ameeting_OWJjY2ViNjktOWZjMS00NGJmLWI5MTUtNTYxM2E5MTgyMTQ1%40thread.v2/0...
Abstract: The effects of aerosols on the Earth’s energy balance since pre-industrial times (aerosol radiative forcing) has significantly and repeatedly dominated the uncertainty in reported estimates of global temperature change from the IPCC . The magnitude of aerosol radiative forcing of climate over the industrial period is estimated to lie between about -2 and -0.4 W m-2, compared to a much better understood forcing of 1.6 to 2.0 W m-2 due to CO2 . In this seminar, past efforts to quantify the range of possible aerosol forcings predicted from an aerosol-climate model that are caused by parametric uncertainty, and to constrain that forcing uncertainty through model-observation comparison using extensive aerosol and cloud-based measurements from ships, flight campaigns, satellites and ground stations, will be discussed. We find that despite a very large reduction in plausible parameter space and reasonable constraint on observable properties, the observational constraint based on this comprehensive set of measurements only partially reduces the range of aerosol radiative forcings from our model. In the NERC project ‘Towards Maximum Feasible Reduction in Aerosol Forcing Uncertainty’ (Aerosol-MFR), several key statistical challenges highlighted from this work are being addressed in order to improve the model-observation comparison process for uncertainty constraint. This includes optimising the way observational constraints are applied, designing new approaches for reducing error compensation effects and using the PPE to identify and characterise model structural errors. Preliminary results from the project so far will be outlined, along with further plans to tackle this important problem.
Biography: Dr Jill Johnson is a Lecturer in Statistics in the School of Mathematical and Physical Sciences at the University of Sheffield. Her research interests are in the development and practical application of statistical methods to quantify, assess and then reduce uncertainty in large-scale complex models of real-world systems, with a focus on problems in environmental science. Prior to joining Sheffield in August 2021, Jill worked as an applied statistician / research associate for over 8 years in the aerosol research group at the Institute for Climate and Atmospheric Science, University of Leeds, where her work focussed on the quantification and constraint of key uncertainties in models of the atmosphere and climate. Her current research builds on this work, including the NERC research project ‘Towards Maximum Feasible Reduction in Aerosol Forcing Uncertainty (Aerosol-MFR)’.
https://teams.microsoft.com/l/meetup-join/19%3ameeting_OWJjY2ViNjktOWZjMS00NGJmLWI5MTUtNTYxM2E5MTgyMTQ1%40thread.v2/0?context=%7b%22Tid%22%3a%2249a50445-bdfa-4b79-ade3-547b4f3986e9%22%2c%22Oid%22%3a%228b208bd5-8570-491b-abae-83a85a1ca025%22%7d
- Speaker: Dr Jill S Johnson; School of Mathematical and Physical Sciences, University of Sheffield, UK
- Tuesday 24 June 2025, 14:00-15:00
- Venue: Chemistry Dept, Unilever Lecture Theatre and Teams.
- Series: Centre for Atmospheric Science seminars, Chemistry Dept.; organiser: Yao Ge.
Wed 04 Jun 14:00: The Australian Antarctic Program Partnership (AAPP) Biogeochemistry Project: Understanding the changing Southern Ocean carbon cycle
The Australian Antarctic Program Partnership (AAPP) is focused on understanding the nature and impacts of Southern Ocean Change. The Biogeochemistry Project, one of the seven complementary initiatives within the AAPP , combines observations, models and data syntheses to understand changes in the Southern Ocean carbon cycle. This work is undertaken in collaboration with other government agencies, national infrastructure programs, and academic institutions, and highlights the use of essential ocean observations and models to improve understanding and deliver impact. An overview of recent field programs will be presented, along with new work to quantify the uptake and storage of anthropogenic CO2 in the ocean, to validate estimates of ocean carbon export from autonomous platforms, and to improve model representation of air-sea CO2 exchange.
- Speaker: Elizabeth H. Shadwick, CSIRO Environment
- Wednesday 04 June 2025, 14:00-15:00
- Venue: BAS Seminar Room 1.
- Series: British Antarctic Survey - Polar Oceans seminar series; organiser: Dr Birgit Rogalla.
Wed 04 Jun 14:00: The Australian Antarctic Program Partnership (AAPP) Biogeochemistry Project: Understanding the changing Southern Ocean carbon cycle
The Australian Antarctic Program Partnership (AAPP) is focused on understanding the nature and impacts of Southern Ocean Change. The Biogeochemistry Project, one of the seven complementary initiatives within the AAPP , combines observations, models and data syntheses to understand changes in the Southern Ocean carbon cycle. This work is undertaken in collaboration with other government agencies, national infrastructure programs, and academic institutions, and highlights the use of essential ocean observations and models to improve understanding and deliver impact. An overview of recent field programs will be presented, along with new work to quantify the uptake and storage of anthropogenic CO2 in the ocean, to validate estimates of ocean carbon export from autonomous platforms, and to improve model representation of air-sea CO2 exchange.
- Speaker: Elizabeth H. Shadwick, CSIRO Environment
- Wednesday 04 June 2025, 14:00-15:00
- Venue: BAS Seminar Room 1.
- Series: British Antarctic Survey - Polar Oceans seminar series; organiser: Dr Birgit Rogalla.
Wed 04 Jun 14:00: The Australian Antarctic Program Partnership (AAPP) Biogeochemistry Project: Understanding the changing Southern Ocean carbon cycle
The Australian Antarctic Program Partnership (AAPP) is focused on understanding the nature and impacts of Southern Ocean Change. The Biogeochemistry Project, one of the seven complementary initiatives within the AAPP , combines observations, models and data syntheses to understand changes in the Southern Ocean carbon cycle. This work is undertaken in collaboration with other government agencies, national infrastructure programs, and academic institutions, and highlights the use of essential ocean observations and models to improve understanding and deliver impact. An overview of recent field programs will be presented, along with new work to quantify the uptake and storage of anthropogenic CO2 in the ocean, to validate estimates of ocean carbon export from autonomous platforms, and to improve model representation of air-sea CO2 exchange.
- Speaker: Elizabeth H. Shadwick, CSIRO Environment
- Wednesday 04 June 2025, 14:00-15:00
- Venue: BAS Seminar Room 1.
- Series: British Antarctic Survey - Polar Oceans seminar series; organiser: Dr Birgit Rogalla.
It’s a hard job being environment minister. Here’s an insider’s view of the key challenges facing Murray Watt
Wed 11 Jun 14:00: Exploring the Impact of Changing Overturning Circulation on Carbon Storage due to the Biological Carbon Pump: An Idealised Modelling Approach
Compelling evidence indicates that ocean circulation is undergoing significant changes due to global warming. These changes include reduced ocean ventilation caused by increased stratification and the weakening of the Atlantic Meridional Overturning Circulation (AMOC). Consequently, this will alter carbon, oxygen, heat and nutrient distribution, and will therefore affect primary production and, by extension, the biological carbon pump. Due to the ocean’s huge capacity for carbon storage, it is imperative that we understand the consequences of these changes.
To examine how ocean ventilation influences the biological carbon pump and overall oceanic carbon storage, an idealised box model of ocean carbon and heat uptake is extended to include biological processes and nutrient cycling. The model includes a thermocline with a dynamically controlled thickness and meridional overturning circulation, both of which vary with increasing temperatures, determining the extent of ocean ventilation. This model, previously employed to analyse the ocean’s carbon and thermal response to anthropogenic emissions, is now adapted to explore the effects of changing overturning on the biological carbon pump. A simple nutrient-phytoplankton-zooplankton-detritus (NPZD) biological model is introduced to simulate the role of macronutrient concentrations on phytoplankton and zooplankton growth. Simulations are conducted under scenarios of both constant and changing circulation to investigate the impacts of slower circulation on the biological carbon pump and its contribution to oceanic carbon storage.
- Speaker: Elisavet Baltas, University of Cambridge
- Wednesday 11 June 2025, 14:00-15:00
- Venue: BAS Seminar Room 2.
- Series: British Antarctic Survey - Polar Oceans seminar series; organiser: Dr Yohei Takano.
Wed 11 Jun 14:00: Exploring the Impact of Changing Overturning Circulation on Carbon Storage due to the Biological Carbon Pump: An Idealised Modelling Approach
Compelling evidence indicates that ocean circulation is undergoing significant changes due to global warming. These changes include reduced ocean ventilation caused by increased stratification and the weakening of the Atlantic Meridional Overturning Circulation (AMOC). Consequently, this will alter carbon, oxygen, heat and nutrient distribution, and will therefore affect primary production and, by extension, the biological carbon pump. Due to the ocean’s huge capacity for carbon storage, it is imperative that we understand the consequences of these changes.
To examine how ocean ventilation influences the biological carbon pump and overall oceanic carbon storage, an idealised box model of ocean carbon and heat uptake is extended to include biological processes and nutrient cycling. The model includes a thermocline with a dynamically controlled thickness and meridional overturning circulation, both of which vary with increasing temperatures, determining the extent of ocean ventilation. This model, previously employed to analyse the ocean’s carbon and thermal response to anthropogenic emissions, is now adapted to explore the effects of changing overturning on the biological carbon pump. A simple nutrient-phytoplankton-zooplankton-detritus (NPZD) biological model is introduced to simulate the role of macronutrient concentrations on phytoplankton and zooplankton growth. Simulations are conducted under scenarios of both constant and changing circulation to investigate the impacts of slower circulation on the biological carbon pump and its contribution to oceanic carbon storage.
- Speaker: Elisavet Baltas, University of Cambridge
- Wednesday 11 June 2025, 14:00-15:00
- Venue: BAS Seminar Room 2.
- Series: British Antarctic Survey - Polar Oceans seminar series; organiser: Dr Yohei Takano.
Wed 11 Jun 14:00: Exploring the Impact of Changing Overturning Circulation on Carbon Storage due to the Biological Carbon Pump: An Idealised Modelling Approach
Compelling evidence indicates that ocean circulation is undergoing significant changes due to global warming. These changes include reduced ocean ventilation caused by increased stratification and the weakening of the Atlantic Meridional Overturning Circulation (AMOC). Consequently, this will alter carbon, oxygen, heat and nutrient distribution, and will therefore affect primary production and, by extension, the biological carbon pump. Due to the ocean’s huge capacity for carbon storage, it is imperative that we understand the consequences of these changes.
To examine how ocean ventilation influences the biological carbon pump and overall oceanic carbon storage, an idealised box model of ocean carbon and heat uptake is extended to include biological processes and nutrient cycling. The model includes a thermocline with a dynamically controlled thickness and meridional overturning circulation, both of which vary with increasing temperatures, determining the extent of ocean ventilation. This model, previously employed to analyse the ocean’s carbon and thermal response to anthropogenic emissions, is now adapted to explore the effects of changing overturning on the biological carbon pump. A simple nutrient-phytoplankton-zooplankton-detritus (NPZD) biological model is introduced to simulate the role of macronutrient concentrations on phytoplankton and zooplankton growth. Simulations are conducted under scenarios of both constant and changing circulation to investigate the impacts of slower circulation on the biological carbon pump and its contribution to oceanic carbon storage.
- Speaker: Elisavet Baltas, University of Cambridge
- Wednesday 11 June 2025, 14:00-15:00
- Venue: BAS Seminar Room 2.
- Series: British Antarctic Survey - Polar Oceans seminar series; organiser: Dr Yohei Takano.
Insect trafficking poses a risk to wildlife and human health
Wed 11 Jun 14:00: Title to be confirmed
Abstract not available
- Speaker: Elisavet Baltas, University of Cambridge
- Wednesday 11 June 2025, 14:00-15:00
- Venue: BAS Seminar Room 2.
- Series: British Antarctic Survey - Polar Oceans seminar series; organiser: Dr Yohei Takano.
Wed 11 Jun 14:00: Title to be confirmed
Abstract not available
- Speaker: Elisavet Baltas, University of Cambridge
- Wednesday 11 June 2025, 14:00-15:00
- Venue: BAS Seminar Room 2.
- Series: British Antarctic Survey - Polar Oceans seminar series; organiser: Dr Yohei Takano.
Wed 11 Jun 14:00: Title to be confirmed
Abstract not available
- Speaker: Elisavet Baltas, University of Cambridge
- Wednesday 11 June 2025, 14:00-15:00
- Venue: BAS Seminar Room 2.
- Series: British Antarctic Survey - Polar Oceans seminar series; organiser: Dr Yohei Takano.