skip to content

Conservation Research Institute



Andrew Friend's research interests concern controls on terrestrial vegetation type, structure, and productivity over a wide range of time and space scales and the effects of vegetation on atmospheric processes through land surface energy partitioning and carbon fluxes. He develops numerical models in order to test our understanding of processes through the ability of these models to faithfully simulate real-world phenomena, as well as address concerns regarding the effects of global change on terrestrial ecosystems and potential future atmospheric feedbacks. One of the main tools he uses is the individual-based model of vegetation dynamics, HYBRID, which is used to simulate land surface responses to climate change and atmospheric CO2. His current work is particularly concerned with growth processes (i.e. how meristem activity is controlled and how the determine plant form and function), internal plant feedbacks between sources and sinks, physiological differences between plant types and species, the representation of competition, and the global-scale dynamics of biogeochemistry-climate interactions.


Key publications: 


  • Babst, F., Friend, A.D., Karamihalaki, M., Wei, J., von Arx, G., Papale, D. and Peters, R.L., 2020. Modeling Ambitions Outpace Observations of Forest Carbon Allocation. Trends in Plant Sciencedoi:10.1016/j.tplants.2020.10.002.
  • Eckes‐Shephard, A.H., Tiavlovsky, E., Chen, Y., Fonti, P. and Friend, A.D., 2020. Direct response of tree growth to soil water and its implications for terrestrial carbon cycle modelling. Global Change Biologydoi:10.1111/gcb.15397.


  • Friend, A.D., Eckes-Shephard, A., Fonti, P., Rademacher, T.T., Rathgeber, C., Richardson, A.D. and Turton, R.H., 2019. On the need to consider wood formation processes in global vegetation models and a suggested approach. Annals of Forest Sciencedoi:10.1007/s13595-019-0819-x.
  • Kemppinen, K.M.S., Holden, P.B., Edwards, N.R., Ridgwell, A. and Friend, A.D., 2019. Coupled climate–carbon cycle simulation of the Last Glacial Maximum atmospheric CO2 decrease using a large ensemble of modern plausible parameter sets. Climate of the Past, v. 15, p.1039-1062. doi:10.5194/cp-15-1039-2019.
  • Rademacher, T.T., Basler, D., Eckes-Shephard, A.H., Fonti, P., Friend, A.D., Le Moine, J. and Richardson, A.D., 2019. Using Direct Phloem Transport Manipulation to Advance Understanding of Carbon Dynamics in Forest Trees. Frontiers in Forests and Global Change, v. 2, p.11-. doi:10.3389/ffgc.2019.00011.
  • Schewe, J., Gosling, S.N., Reyer, C., Zhao, F., Ciais, P., Elliott, J., Francois, L., Huber, V., Lotze, H.K., Seneviratne, S.I., van Vliet, M.T.H., Vautard, R., Wada, Y., Breuer, L., Büchner, M., Carozza, D.A., Chang, J., Coll, M., Deryng, D., de Wit, A., Eddy, T.D., Folberth, C., Frieler, K., Friend, A.D., Gerten, D., Gudmundsson, L., Hanasaki, N., Ito, A., Khabarov, N., Kim, H., Lawrence, P., Morfopoulos, C., Müller, C., Müller Schmied, H., Orth, R., Ostberg, S., Pokhrel, Y., Pugh, T.A.M., Sakurai, G., Satoh, Y., Schmid, E., Stacke, T., Steenbeek, J., Steinkamp, J., Tang, Q., Tian, H., Tittensor, D.P., Volkholz, J., Wang, X. and Warszawski, L., 2019. State-of-the-art global models underestimate impacts from climate extremes. Nat Commun, v. 10, p.1005-. doi:10.1038/s41467-019-08745-6.


  • Babst, F., Bodesheim, P., Charney, N., Friend, A.D., Girardin, M.P., Klesse, S., Moore, D.J.P., Seftigen, K., Björklund, J., Bouriaud, O., Dawson, A., DeRose, R.J., Dietze, M.C., Eckes, A.H., Enquist, B., Frank, D.C., Mahecha, M.D., Poulter, B., Record, S., Trouet, V., Turton, R.H., Zhang, Z. and Evans, M.E.K., 2018. When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews, v. 197, p.1-20. doi:10.1016/j.quascirev.2018.07.009.
  • Eller, C.B., Rowland, L., Oliveira, R.S., Bittencourt, P.R.L., Barros, F.V., da Costa, A.C.L., Meir, P., Friend, A.D., Mencuccini, M., Sitch, S. and Cox, P., 2018. Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Philosophical Transactions of the Royal Society B Biological Sciences, v. 373, p.20170315-. doi:10.1098/rstb.2017.0315.
  • Hacket‐Pain, A.J., Ascoli, D., Vacchiano, G., Biondi, F., Cavin, L., Conedera, M., Drobyshev, I., Liñán, I.D., Friend, A.D., Grabner, M., Hartl, C., Kreyling, J., Lebourgeois, F., Levanič, T., Menzel, A., Maaten, E., Maaten‐Theunissen, M., Muffler, L., Motta, R., Roibu, C., Popa, I., Scharnweber, T., Weigel, R., Wilmking, M. and Zang, C.S., 2018. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecology Letters, v. 21, p.1833-1844. doi:10.1111/ele.13158.


  • Hacket-Pain, A.J. and Friend, A.D., 2017. Increased growth and reduced summer drought limitation at the southern limit of Fagus sylvatica L., despite regionally warmer and drier conditions. Dendrochronologia, v. 44, p.22-30. doi:10.1016/j.dendro.2017.02.005.
  • Hayat, A., Hacket-Pain, A.J., Pretzsch, H., Rademacher, T.T. and Friend, A.D., 2017. Modeling Tree Growth Taking into Account Carbon Source and Sink Limitations. Frontiers in Plant Science, v. 8, p.182-. doi:10.3389/fpls.2017.00182.
  • Thurner, M., Beer, C., Ciais, P., Friend, A.D., Ito, A., Kleidon, A., Lomas, M.R., Quegan, S., Rademacher, T.T., Schaphoff, S., Tum, M., Wiltshire, A. and Carvalhais, N., 2017. Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests. Global Change Biologydoi:10.1111/gcb.13660.


  • Hacket-Pain, A.J., Cavin, L., Friend, A.D. and Jump, A.S., 2016. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. European Journal of Forest Research, v. 135, p.897-909. doi:10.1007/s10342-016-0982-7.
  • Hacket-Pain, A.J., Friend, A.D., Lageard, J.G.A. and Thomas, P.A., 2016. Tree rings and masting: considering reproductive phenomena when interpreting tree rings?. TRACE - Tree Rings in Archaeology, Climatology and Ecology, v. 14, p.78-85. doi:10.2312/GFZ.b103-16042.


  • Ekici, A., Chadburn, S., Chaudhary, N., Hajdu, L.H., Marmy, A., Peng, S., Boike, J., Burke, E., Friend, A.D., Hauck, C., Krinner, G., Langer, M., Miller, P.A. and Beer, C., 2015. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. The Cryosphere, v. 9, p.1343-1361. doi:10.5194/tc-9-1343-2015.
  • Frieler, K., Levermann, A., Elliott, J., Heinke, J., Arneth, A., Bierkens, M.F.P., Ciais, P., Clark, D.B., Deryng, D., Döll, P., Falloon, P., Fekete, B., Folberth, C., Friend, A.D., Gellhorn, C., Gosling, S.N., Haddeland, I., Khabarov, N., Lomas, M., Masaki, Y., Nishina, K., Neumann, K., Oki, T., Pavlick, R., Ruane, A.C., Schmid, E., Schmitz, C., Stacke, T., Stehfest, E., Tang, Q., Wisser, D., Huber, V., Piontek, F., Warszawski, L., Schewe, J., Lotze-Campen, H. and Schellnhuber, H.J., 2015. A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties. Earth System Dynamics, v. 6, p.447-460. doi:10.5194/esd-6-447-2015.
  • Hacket-Pain, A.J., Friend, A.D., Lageard, J.G.A. and Thomas, P.A., 2015. The influence of masting phenomenon on growth–climate relationships in trees: explaining the influence of previous summers' climate on ring width. Tree Physiology, v. 35, p.319-330. doi:10.1093/treephys/tpv007.
  • Nishina, K., Ito, A., Falloon, P., Friend, A.D., Beerling, D.J., Ciais, P., Clark, D.B., Kahana, R., Kato, E., Lucht, W., Lomas, M., Pavlick, R., Schaphoff, S., Warszawaski, L. and Yokohata, T., 2015. Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the ISI-MIP results. Earth System Dynamics, v. 6, p.435-445. doi:10.5194/esd-6-435-2015.
  • Pasquato, M., Medici, C., Friend, A.D. and Francés, F., 2015. Comparing two approaches for parsimonious vegetation modelling in semiarid regions using satellite data. Ecohydrology, v. 8, p.1024-1036. doi:10.1002/eco.1559.
  • Quiquet, A., Archibald, A.T., Friend, A.D., Chappellaz, J., Levine, J.G., Stone, E.J., Telford, P.J. and Pyle, J.A., 2015. The relative importance of methane sources and sinks over the Last Interglacial period and into the last glaciation. Quaternary Science Reviews, v. 112, p.1-16. doi:10.1016/j.quascirev.2015.01.004.
  • Raghavan, M., Steinrücken, M., Harris, K., Schiffels, S., Rasmussen, S., DeGiorgio, M., Albrechtsen, A., Valdiosera, C., Ávila-Arcos, M.C., Malaspinas, A.-.S., Eriksson, A., Moltke, I., Metspalu, M., Homburger, J.R., Wall, J., Cornejo, O.E., Moreno-Mayar, J.V., Korneliussen, T.S., Pierre, T., Rasmussen, M., Campos, P.F., de Barros Damgaard, P., Allentoft, M.E., Lindo, J., Metspalu, E., Rodríguez-Varela, R., Mansilla, J., Henrickson, C., Seguin-Orlando, A., Malmström, H., Stafford, T., Shringarpure, S.S., Moreno-Estrada, A., Karmin, M., Tambets, K., Bergström, A., Xue, Y., Warmuth, V., Friend, A.D., Singarayer, J., Valdes, P., Balloux, F., Leboreiro, I., Vera, J.L., Rangel-Villalobos, H., Pettener, D., Luiselli, D., Davis, L.G., Heyer, E., Zollikofer, C.P.E., de León, M.S.P., Smith, C.I., Grimes, V., Pike, K.-.A., Deal, M., Fuller, B.T., Arriaza, B., Standen, V., Luz, M.F., Ricaut, F., Guidon, N., Osipova, L., Voevoda, M.I., Posukh, O.L., Balanovsky, O., Lavryashina, M., Bogunov, Y., Khusnutdinova, E., Gubina, M., Balanovska, E., Fedorova, S., Litvinov, S., Malyarchuk, B., Derenko, M., Mosher, M.J., Archer, D., Cybulski, J., Petzelt, B., Mitchell, J., Worl, R., Norman, P.J., Parham, P., Kemp, B.M., Kivisild, T., Tyler-Smith, C., Sandhu, M.S., Crawford, M., Villems, R., Smith, D.G., Waters, M.R., Goebel, T., Johnson, J.R., Malhi, R.S., Jakobsson, M., Meltzer, D.J., Manica, A., Durbin, R., Bustamante, C.D., Song, Y.S., Nielsen, R. and Willerslev, E., 2015. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science, v. 349, p.aab3884-. doi:10.1126/science.aab3884.

▼ Show earlier journal articles …

Teaching and Supervisions

Research supervision: 

I welcome the opportunity to supervise PhD students who wish to work on modelling and observations in the areas of plant physiology, ecosystem dynamics, global biogeochemical cycles (especially the global carbon cycle), and/or climate systems, especially where one or more of these elements are coupled.

I am specifically seeking applicants for PhD projects associated with the NERC Doctoral Training Partnership:

An example of another possible topic is shown at the end of this page, but many other topics are of equal interest - please feel free to suggest what you would like to work on within the general research areas described here.